
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)

e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 3, Ver. II (May - June 2017), PP 40-50

www.iosrjournals.org

DOI: 10.9790/2834-1203024050 www.iosrjournals.org 40 | Page

Fpga Implementation of Image Encryption and Decryption Using

Aes Algorithm Along With Key Encryption

Parul Rajoriya
1
, Nilesh Mohota (Professor)

2

1, 2
Department of E&TC J.D. College of Engineering and Management

Abstract: The importance of cryptography applied to security in electronic data transactions has acquired an

essential relevance during the last few years. A proposed FPGA-based implementation of the Advanced

Encryption Standard(AES) algorithm along with key encryption for images is presented in this paper. An

efficient image encryption scheme based on FPGA using AES algorithm integrated with RC4 encryption

standard is proposed. The use of RC4 algorithm imparts additional level of security to the encryption. The

design converts the original image into its hex values using Matlab and then give it as input to the proposed

AES. The key input given to AES is further encrypted using RC4 encryption algorithm. The encrypted image is

decrypted using AES decryption algorithm. The encrypted key is decrypted using RC4 decryption algorithm so

as to give it as input to the AES decryption algorithm. The encrypted and decrypted image can be analysed in

Matlab. The design uses an iterative looping approach with block and key size of 128 bits, lookup table

implementation of S-box. This gives low complexity architecture and easily achieves low latency as well as high

throughput.

Keywords: AES algorithm, RC4 algorithm, image encryption, key encryption, image decryption, key decryption

I. Introduction
Each day millions of users generate and interchange large volumes of information in various fields,

such as financial and legal files, medical reports, and bank services via Internet. These and other examples of

applications deserve a special treatment from the security point of view, not only in the transport of such

information but also in its storage. In this sense cryptography techniques are especially applicable. For a long

time, the Data Encryption Standard (DES) was considered as a standard for the symmetric key encryption. DES

has a key length of 56 bits. However, this key length is currently considered small and can easily be broken. For

this reason, the National Institute of Standards and Technology (NIST) opened a formal call for algorithms in

September 1997. A group of fifteen AES candidate algorithms were announced in August 1998. Next,

algorithms were subject to assessment process performed by various groups of cryptographic researchers all

over the world. In August 2000, NIST selected five algorithms: Mars, RC6, Rijndael, Serpent and Twofish as

the final competitors. These algorithms were subject to further analysis prior to the selection of the best

algorithm for the AES. Finally, on October 2, 2000, NIST announced that the Rijndael algorithm was the

winner. Field Programmable Gate Arrays (FPGAs) are hardware devices whose function is not fixed which can

be programmed in system. The potential advantage of encryption algorithm implemented in FPGAs includes:

Algorithm agility- This term refers to the switching of cryptographic algorithm during operation.

Algorithm upload- It is perceivable that fielded devices upgraded with new encryption algorithm which did not

exist at design time.

Algorithm modification- There are applications which require modification of a standardized algorithm.

Architecture efficiency- With FPGAs it is possible to design and optimize architecture for specific parameter

set.

Throughput- Although typically slower than ASIC implementation, FPGA have potential of running

substantially faster than software implementations.

Cost efficiency- Time and cost for developing an FPGA implementation of a given algorithm are much lower

than for an ASIC implementation.

As shown in Fig. 1 the cryptographic primitives are classified into three main categories; not using key,

symmetric key and asymmetric key [1]. Symmetric key ciphers are also known as secret key or single key

ciphers. Secret key ciphers are further classified as block ciphers and stream ciphers. In block ciphers, a block of

bits/bytes is processed at a time. DES, IDEA, RC5, AES, BLOWFISH, TWOFISH are the different available

block ciphers. Whereas in stream ciphers one bit or a byte of data is processed at a time. Stream ciphers are

further classified as synchronous and self-synchronous stream ciphers.Different synchronous stream ciphers

available in the literature are RC4, E0 (a stream cipher used in Bluetooth), A5/1 and A5/2 (stream ciphers used

in GSM), SNOW 3G, ZUC (4G stream ciphers), Rabbit, FISH, and HC-256 etc. [2-7].

A keystream is produced in stream ciphers which is a pseudorandom sequence of bits. A plaintext (a sequence

of bits/bytes) is converted into ciphertext (again a sequence of bits/bytes of same length as that of plaintext) by

Fpga Implementation Of Image Encryption And Decryption Using Aes Algorithm Along With Key

DOI: 10.9790/2834-1203024050 www.iosrjournals.org 41 | Page

hiding the plaintext with a generated keystream, using a simple XOR operation. The strength of stream ciphers

is a random keystream which ensures the computational security of the cipher.

In cryptography, the AES is also known as Rijndael. AES has a fixed block size of 128 bits and a key

size of 128, 192 or 256 bits. This paper deals with an FPGA implementation of an AES encryptor/decryptor

using an iterative looping approach with block and key size of 128 bits along with key encryption and

decryption using RC4 algorithm . This method imparts additional level of security.

II. Proposed Work

Fig 2. Proposed architecture

The figure 2 gives the proposed architecture in which image encryption and decryption is carried out

using blend of AES algorithm and RC4 algorithm to provide additional level of security. The image encryption

and decryption is carried out using AES algorithm and key encryption and decryption is carried out using RC4

algorithm.

A. Aes Encryption And Decryption

The AES Algorithm is a symmetric-key cipher, in which both the sender and the receiver use a single

key for encryption and decryption. The data block length is fixed to be 128 bits, while the length can be

128,192,or 256 bits. In addition, the AES algorithm is an iterative algorithm. Each iteration can be called a

round, and the total number of rounds is 10,12, or 14, when key length is 128,192, or 256, respectively. The 128

bit data block is divided into 16 bytes. These bytes are mapped to a 4x4 array called the State, and all the

internal operations of the AES algorithm are performed on the State

Fpga Implementation Of Image Encryption And Decryption Using Aes Algorithm Along With Key

DOI: 10.9790/2834-1203024050 www.iosrjournals.org 42 | Page

a. AES Encryption

 An outline of AES encryption is given in Fig. 3a) In the encryption of the AES algorithm, each round except

the final round consists of four transformations:

Fig 3. AES Encryption and Decryption process

SubBytes Transformation: Operates in each byte of the State independently. Each byte is substituted by

corresponding byte in the S-box

ShiftRows Transformation: Cyclically shifts the rows of the State over different offsets.

MixColumns Transformation: In this operation the column of the State are considered as polynomials over

GF(2⁸) and are multiplied with a fixed polynomial. The MixColumn component doesnot operate in the last

round of the algorithm

AddRoundKey Transformation: Involves bit-wise XOR operation.

b. AES Decryption

Decryption is a reverse of encryption which inverse round transformations to computes out the original

plaintext of an encrypted cipher-text in reverse order shown in fig.3.b). The round transformation of decryption

uses the functions AddRoundKey, InvMixColumns, InvShiftRows, and InvSubBytes successively.

AddRoundKey: AddRoundKey is its own inverse function because the XOR function is its own inverse. The

round keys have to be selected in reverse order.

InvShiftRows Transformation: InvShiftRows exactly functions the same as ShiftRows, only in the opposite

direction. The first row is not shifted, while the second, third and fourth rows are shifted right by one, two and

three bytes respectively.

InvSubBytes transformation: The InvSubBytes transformation is done using a once precalculated substitution

table called InvS-box. That InvS-box table contains 256 numbers (from 0 to 255) and their corresponding

values.

InvMixColumns Transformation:The InvMixColumns transformation is done using polynomials of degree less

than 4 over GF(28), which coefficients are the elements in the columns of the state, are multiplied modulo (x4 +

1) by a fixed polynomial d(x) = {0B}x3 + {0D}x2 + {09}x + {0E}, where {0B}, {0D}; {09}, {0E} denote

hexadecimal values.

B. RC4 Encryption And Decryption

Fig 4. Block diagram of RC4 algorithm

Fpga Implementation Of Image Encryption And Decryption Using Aes Algorithm Along With Key

DOI: 10.9790/2834-1203024050 www.iosrjournals.org 43 | Page

RC4 follows the design strategy used in stream ciphers. To extract the pseudorandom data bytes from a

pseudorandom permutation is the basic design principle of RC4 stream cipher. RC4 has two working modules:

first there is a KSA with key K as input (with typical size of 40-256 bits), and second is PRGA which generates

a pseudo-random output sequence. The pseudo code for RC4. Fig 4 presents the complete working of RC4

encryption algorithm. KSA generates the 256 byte initial state vector S, by scrambling input state vector with a

random key K. The S contains a permutation of 8 bit words i.e. 256 bytes. The secret key k is generally of length

between 8 to 2048 bits and the expanded key K (K of length N=256 bytes) is produced by performing simple

repetitions. The expanded key is generated in the manner such that if secret key k is of length l bytes, the

expanded key will be K[i] = k [i mod l] for 0 ≤ i ≤ N-1. Further S pairs are swapped and an initial state SN-1 is

achieved at the end which is the input to the second module PRGA. It generates the keystream of words and is

further XORed with the plaintext to produce a ciphertext. Fig 5 depicts both the modules.

Fig 5.RC4 Stream Cipher

III. Design Steps

A. AES Encrytion steps

The encryption process is iterative in nature. Each iterations are known as rounds .For each round 128

bit input data and 128 bit key is required .That is,need 4 words of key in one round.So the input key must be

expanded to the required number of words, which depends upon the number of rounds. The output of each

round serves as input of next stage.In AES system,same secret key is used for both encryption and

decryption.So it provides simplicity in design.

a. State array

The input to the encryption algorithm is a single 128-bit block .This block is copied into the State array,which is

a square matrix of bytes. State array is modified at each stage of encryption.Similarly,the 128 bit key is depicted

as a square matrix of bytes.The ordering of bytes within a matrix is by column.

b. Key Expansion

Key expansion is an important for both encryption and decryption.

Fig 6. Key Expansion Algorithm

Fpga Implementation Of Image Encryption And Decryption Using Aes Algorithm Along With Key

DOI: 10.9790/2834-1203024050 www.iosrjournals.org 44 | Page

The AES key expansion algorithm takes as input a 4-word (16 bytes) key which is the output of the

RC4 encryption module and produces a linear array of 44 words (176 bytes).This is sufficient to provide a 4-

word round key for the initial Add Round Key stage and each of the 10 rounds of the cipher. The following

pseudocode describes the expansion:

The key which is the output of RC4 Encrytion is copied into the first 4 words of the expanded key.The

reminder of the expanded key is filled in 4 words at a time.Each added word w[i] depends on the immediately

preceding word, w[i-1] and the word four positions back, w[i-4]. In three out of four cases, a simple XOR is

used. For a word:

1. RotWord performs a one-byte circular left shift on a word.This means that an input word [b0,b1,b2,b3] is

transformed into [b1,b2,b3,b0]

2. SubWord performs a byte substitution on each byte of its input word,using the S-box.

3. The result of step 1 and step2 is XORed with a round constant Rcon[j].

The round constant is a word in which the three rightmost bytes are always 0.Thus the effect of XOR of

a word with Rcon is to only perform an XOR on the left byte of the word.The round constant is for each round

and is defined as Rcon[j] = (RC[j],0,0,0), with RC[1]=1; RC[j]=2*RC[j-1] and with multiplication over the

field GF(2^8). The values of RC[j] in hexadecimal are :

c. Add Round Key

The 128 bits of State array are bitwise XORed with the 128 bits of the round key(4 words of the expanded

key).The operation is viewed as a columnwise operation between the 4 bytes of the State array column and one

word of the round key (Figure).

Fig 7. XOR Operation between State and Key word

d. Substitute Bytes

AES defines a 16 x 16 matrix of byte values, called an S-box, that contains a permutation of all possible 256 8-

bit values. Each byte of State array is mapped into a new byte in the following way: The leftmost 4 bits of the

byte are used as a row value and the leftmost 4 bits are used as a column value. These row and column values

serve as indexes into the S-box to select a unique 8-bit output value. (Figure 8).

Fpga Implementation Of Image Encryption And Decryption Using Aes Algorithm Along With Key

DOI: 10.9790/2834-1203024050 www.iosrjournals.org 45 | Page

Fig 8. Sub-Byte Operation

e. Shift Rows

The first row of State array is not altered. For the second row , a 1-byte circular left shift is performed. For the

third row,a 2- byte circular left shift is performed. For the third row, a 3- byte circular left shift is performed.

 Fig 9. Shifting Operation

f. Mix Columns

It operates on each column individually.Each byte of a column is mapped into a new value that is a function of

all four bytes in the column.The transformation can be defined by following matrix multiplication on State array

Each element in the product matrix is the sum of products of elements of one row and one column.In this

case,individual additions and multiplications are performed in GF(2^8).The Mix Column transformation on a

single column j(0 <= j <= 3) of State array can be expressed as

B. AES Decryption Steps

The Cipher transformations can be inverted and then implemented in reverse order to produce a

straightforward Inverse Cipher for the AES algorithm. The individual transformations used in the Inverse Cipher

- InvShiftRows(), InvSubBytes(),InvMixColumns(), and AddRoundKey() – process the State and are described

in the following subsections. The Inverse Cipher is described in the pseudo code in Fig. 10 In Fig. 10, the array

w[] contains the key schedule, described earlier.

Fpga Implementation Of Image Encryption And Decryption Using Aes Algorithm Along With Key

DOI: 10.9790/2834-1203024050 www.iosrjournals.org 46 | Page

Fig 10. Pseudo code for Inverse Cipher

a. Inverse Shift Rows() Transformation

Inv Shift Rows () is the inverse of the Shift Rows () transformation. The bytes in the last three rows of

the State are cyclically shifted over different numbers of bytes (offsets). The first row, r = 0, is not shifted. The

bottom three rows are cyclically shifted by Nb - shift(r, Nb) bytes, where the shift value shift(r, Nb) depends on

the row number. Specifically, the InvShift Rows () transformation proceeds as follows:

Figure 11 illustrates the Inv Shift Rows () transformation.

Fig 11. Inv Shift Rows ()

b. InvSubBytes Transformations

InvSubBytes() is the inverse of the byte substitution transformation, in which the inverse Sbox is applied to each

byte of the State. This is obtained by applying the inverse of the affine transformation followed by taking the

multiplicative inverse in GF(28). The inverse S-box used in the InvSubBytes() transformation is presented in

Fig. 12

Fig 12. Inverse S-box substitution values for the byte xy(in hexadecimal format)

c. InvMixColumns() Transformation

InvMixColumns() is the inverse of the MixColumns() transformation. InvMixColumns() operates on the State

column-by-column, treating each column as a fourterm polynomial. The columns are considered as polynomials

over and multiplied modulo with a fixed polynomial given by

Fpga Implementation Of Image Encryption And Decryption Using Aes Algorithm Along With Key

DOI: 10.9790/2834-1203024050 www.iosrjournals.org 47 | Page

Let

d. Inverse of the AddRoundKey() Transformation

AddRoundKey(),is its own inverse, since it only involves an application of the XOR operation.

IV. Development Steps
A. Development of Platform Using NIOS II Processor

In QUARTUS II (version 8.1) environment the development flow begins with selection of Cyclone II

(EP2C35F672) family. Then according to system hardware requirements, we use the SOPC (System on

programmable chip) builder tool which is available in Quartus II environment to design the system. As shown in

Fig.13 using SOPC Builder a single core system is designed which is having a NIOS II processor core, SRAM

memory for storing the data, for the calculation of clock and timing analysis performance counter is added and

JTAG UART is connected to processor for interface. SOPC Builder generates the interconnect logic to integrate

the components in the hardware system. When the system is generated successfully as shown in Fig.14.sopc file

is created. Once single core NIOS II system is generated, we integrate it into the overall Quartus II project. After

this the system is complied and compilation report is generated as shown in Fig.15. We can also calculate the

total thermal power dissipated by the single core system which is found to be 116.66 mW using the PowerPlay

power analyzer tool which is available in QUARTUS II environment as shown in Fig.16 Then the system

designed using NIOS II processor is downloaded on Altera DE2 FPGA board as shown in Fig.17.

Fig 13. Development of platform using single NIOS II processor

Fig 14. Single core system generated using NIOS II processor

Fpga Implementation Of Image Encryption And Decryption Using Aes Algorithm Along With Key

DOI: 10.9790/2834-1203024050 www.iosrjournals.org 48 | Page

Fig 15. Compilation report

Fig 16. Powerplay power analyzer tool result

Fig 17. Single core NIOS II system downloaded into Altera DE2 board

B. Implementation on the developed platform

Using NIOS II IDE , we specify path of the developed system. After this .ptf file is selected which is

created when the system hardware is downloaded into Altera DE2 board. Then we can begin designing our

C/C++ application code immediately with NIOS II IDE. Altera provides component drivers and a hardware

abstraction layer (HAL) which allows us to write NIOS II programs quickly and independently of the low-level

hardware details. NIOS II IDE provides complete facilities for downloading software to a target board, and

running or debugging the program on hardware. The IDE debugger allows us to start and stop the processor.

Fpga Implementation Of Image Encryption And Decryption Using Aes Algorithm Along With Key

DOI: 10.9790/2834-1203024050 www.iosrjournals.org 49 | Page

C. Implementation of Proposed AES blended with RC4 Encryption Algorithm

AES algorithm is designed for image encryption using C language in NIOS II IDE and verified. Then

proposed AES algorithm is formed by including the RC4 cipher in the encryption code of AES to further

enhance the encryption performance. Then a grey scale image is read using MATLAB and given as input to

encryption algorithm. Implementation of this is done on the Altera DE2 FPGA (Cyclone II EP2C35F672) board

using single core NIOS II system and the output obtained in NIOS II IDE is shown in Fig 18.

Fig 18. Output of Proposed AES blended with RC4 Encryption Algorithm

As the size of image that is to be encypted is 128*128 so total 1024 keys are generated for its

encryption i.e from key0 to key1023 as shown in Fig.7.8, this is because as AES encrypt 128 bits i.e 16 bytes at

a time when the size of state matrix is 4*4. CPU clock cycles required for image encryption is calculated using

performance counter.

D. Implementation of Proposed AES Decryption Algorithm

Proposed AES algorithm is designed for image decryption by including the RC4 cipher in the same

manner as the design of encryption algorithm is done. CPU clock cycles required for image decryption is

calculated using performance counter. The decrypted output obtained in NIOS II IDE by implementing the

decryption algorithm on Altera DE2 FPGA (Cyclone II EP2C35F672) board using single core NIOS II system is

shown in Fig. 19.

Fig 19. Output of Proposed AES Decryption Algorithm

Fpga Implementation Of Image Encryption And Decryption Using Aes Algorithm Along With Key

DOI: 10.9790/2834-1203024050 www.iosrjournals.org 50 | Page

TEST IMAGE

IMG SIZE: 16X16

ENCRYPTED IMAGE

IMG SIZE :16X16

DECRYPTED IMAGE

IMG SIZE : 16X16

V. Conclusion
The encryption and decryption of image on the blended platform of AES and RC4 is successfully performed, i.e.

FPGA implementation of image encryption and decryption using AES algorithm along with key encryption is

executed successfully.

References
[1] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-book of Applied Cryptography. CRC Press, August 2011

edition, 1996. Fifth Printing.

[2] Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of A5/1 on a PC. In Bruce Schneier, editor, FSE, volume
1978 of Lecture Notes in Computer Science, pages 1–18. Springer, 2000.

[3] Bluetooth T M. Bluetooth specification, v4.0, June 2010. E0 encryption algorithm described in volume 2, pages 1072–1081.

Available online at http://www.bluetooth.org.
[4] Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical implementation of the GSM A5/1 and A5/2 “voice privacy”

encryption algorithms. Available online at http://www.scard.org/gsm/a51.html, 1998.

[5] 3rd Generation Partnership Project. Specification of the 3GPP confidentiality and integrity algorithms UEA2 & UIA2. ETSI/SAGE
Specification Document 2: SNOW 3G Specification, v1.1, September 6, 2006.

[6] ECRYPT Stream Cipher Project eSTREAM. The current eSTREAM portfolio. Available online at http://www.ecrypt.eu.org/stream/
index.html.

[7] ECRYPT Stream Cipher Project eSTREAM. Software performance results from the eSTREAM project. Available online at

http://www. ecrypt.eu.org/stream/perf/#results.
[8] El. Maraghy M, Hesham S and Abd El. Ghany M.A, “Real-time Efficient FPGA implementation of AES algorithm”, IEEE

International SOC Conference(SOCC), page 203-208, Sept 2013.

[9] M.Sambasiva Reddy and Mr.Y.Amar Babu, “Evaluation Of Microblaze and Implementation Of AES Algorithm using Spartan-3E”,
International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 2, Issue 7, page 3341-

3347, July 2013.

[10] Hoang Trang and Nguyen Van Loi, “An Efficient FPGA Implementation of The Advanced Encryption Standard algorithm”, IEEE
International Conference on Computing and Communication Technology, page 1-4, Ho Chi Minh city, 2012.

[11] Kamali S.H, Shakerian R, Hedayati M and Rahmani M, “A new modied version of Advanced Encryption Standard based algorithm

for image encryption”, (ICEIE) International Conference On Electronics and Information Engineering, volume 1, page 1250-1255,
Aug 2010.

http://www.bluetooth.org/

